
E

E

M
O

a

A
R
R
A

K
W
C
B
E

1

r
w
C
m
m
u
e
a
e
c
n
d
i
c

R

(

0
d

ARTICLE IN PRESSG Model
NB-3584; No. of Pages 10

Energy and Buildings xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Energy  and  Buildings

j ourna l ho me p age: www.elsev ier .com/ locate /enbui ld

valuation  of  weather  datasets  for  building  energy  simulation

ahabir  Bhandari ∗,  Som  Shrestha,  Joshua  New
ak Ridge National Laboratory, Oak Ridge, TN, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 8 November 2011
eceived in revised form 19 January 2012
ccepted 28 January 2012

eywords:
eather data

limate
uilding energy simulation
nergyPlus

a  b  s  t  r  a  c  t

In  recent  years,  calibrated  energy  modeling  of  residential  and  commercial  buildings  has  gained  impor-
tance  in  a  retrofit-dominated  market.  Accurate  weather  data  play an  important  role  in  this  calibration
process  and  projected  energy  savings.  It  would  be  ideal  to measure  weather  data  at  the  building  loca-
tion to  capture  relevant  microclimate  variation  but  this  is generally  considered  cost-prohibitive.  There
are data  sources  publicly  available  with  high  temporal  sampling  rates  but at  relatively  poor  geospatial
sampling  locations.  To  overcome  this  limitation,  there  are  a growing  number  of  service  providers  that
claim  to  provide  real  time  and  historical  weather  data  necessary  for  building  modeling  at 15–40  km2

grid  across  the  globe;  common  variables  such  as  temperature  and  precipitation  have  been  constructed
on  ∼1 km2 grids  [1].  Unfortunately,  there  is  limited  documentation  from  3rd-party  sources  attesting  to
the  accuracy  of  this  data.  This  paper  compares  provided  weather  characteristics  with  data  collected  from
a weather  station  inaccessible  to the service  providers.  Monthly  average  dry bulb  temperature;  relative
humidity;  direct  normal,  diffuse  and  global  solar  radiation;  wind  speed  and  wind  direction  are  statisti-

cally  compared.  Moreover,  we  ascertain  the  relative  contribution  of  each  weather  variable  and  its impact
on building  loads.  Annual  simulations  are  performed  for three  different  building  types,  including  a  closely
monitored  and  automated  energy  efficient  research  building.  The  comparison  shows  that  the  difference
for  an  individual  variable  can  be as  high  as  90%.  In addition,  annual  building  energy  consumption  can  vary
by ±7%  while  monthly  building  loads  can  vary  by  ±40%  as a function  of  the  provided  location’s  weather

data.

. Introduction

Building energy simulation is increasingly necessary for accu-
ately quantifying potential energy savings measures in compliance
ith building code trade-offs and new legislation. For example,
alifornia has passed AB 758 and AB1103 that require energy
odeling whenever commercial properties change hands. This dra-
atically increases the need for certified auditors skilled in the

se of energy assessment tools that can identify cost-effective
nergy efficiency improvements, prioritize those improvements,
nd provide a credible estimate of payback period or cost-
ffectiveness for each one. Enhanced automation of current
alibration methodologies is needed to reduce the manual costs
ecessary for fulfilling such requirements. Accurate weather
ata for the microclimate surrounding a given building dur-
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
(2012), doi:10.1016/j.enbuild.2012.01.033

ng the time that data was collected is necessary for accurate
alibration.
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There are three main classes of weather data with tradi-
tional use cases for each: “typical” weather data (representative
of some location over an arbitrary period of time) often used
for design and performance conditions over the life of a build-
ing, “actual” weather data (at a specific location for a specific
period of time) used for simulation calibration to energy bills,
and “future” weather data used for adaptive control of a build-
ing. There are a multitude of representative weather datasets
for each class, among the most popular of which include: the
Typical Meteorological Year (TMY2 [2],  TMY3 [3]), International
Weather for Energy Calculation (IWEC) [4] datasets, the world’s
largest active archive of weather data at the National Oceanic
and Atmospheric Administration’s (NOAA) National Climatic Data
Center (NCDC) including the currently 12,000-location Integrated
Surface Hourly (ISH) dataset for actual weather measurements,
and sources provided by NOAA’s National Weather Service [5]
for future weather data. However, the best dataset for an indi-
vidual will depend on the purpose, location, and simulation
engine being used. The interested reader can find many weather
datasets for use with EnergyPlus at [6].  In this paper, analysis
eather datasets for building energy simulation, Energy Buildings

is performed solely for actual weather data in order to facili-
tate increased automation of simulation calibration and allow for
a more direct comparison between measured data and vendor-
provided data.

dx.doi.org/10.1016/j.enbuild.2012.01.033
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. Approach

.1. Previous work

The Building Energy Software Tools Directory [7] currently lists
ore than 400 software tools for evaluating energy efficiency,

enewable energy, and sustainability in buildings with approxi-
ately 120 tools just for whole building energy simulations. These

ools are becoming increasingly sophisticated and include the capa-
ility of representing the building and its systems in great detail, in
rder to realistically capture the relevant properties of the build-
ng system. However, the uncertainties of various input parameters
or a model generally increase with the breadth and depth of pos-
ible inputs, leading to unrealistic simulation results. Weather data
s one of the important sets of input parameters required to ade-
uately simulate the thermal behavior of buildings and can have a
ignificant impact on the output of these simulation tools. Weather
ata can influence the building performance in several ways; for
xample, dry bulb temperature and solar radiation influence the
eating and cooling loads while relative humidly impacts the latent

oad of the building and sizing of HVAC equipment. There are also
trong correlations between weather variables; with an increase
n global horizontal irradiation (GHI), dry bulb temperature (DBT)

ould generally increase, while the relative humidity (RH) tends
o decrease [8].  That study suggests that simply comparing one
arameter between two weather datasets may  not give a complete
icture of the influence this variation may  have in overall energy
onsumption.

Huang and Crawley showed the variation inherent in actual
eather data and how it influenced the simulation results [9].  They
sed six typical weather datasets for this 1996 study and performed
he simulations for a typical office building using DOE2.1E hourly
imulation program [10] for five different US locations. They con-
luded that the average variation in annual energy consumption
ue to weather variation is ±5%. Lama et al. [11] analyzed the mea-
ured long-term hourly weather data for five Chinese cities with
ifferent climates with the intent that researchers and designers
ould use the distribution plots of weather data and consumption
rofiles for their building design and analysis. Seo et al. [12] studied
he impact of typical weather year selection approaches on energy
nalysis for a 3-story office building using the DOE-2 simulation
rogram. The results of this study showed a maximum 5% difference
etween the simulation results obtained using any typical weather
atasets (TMY, IWEC, and TMY2) and those obtained by averaging
he results for 30 years for 10 US climates.

Recently, several researchers have investigated the impact of
limate change on energy consumption of buildings. Many stud-
es have begun to incorporate future models of weather based on
limate change to develop typical weather data that, it is antici-
ated, more accurately represents the weather to be seen in the

ifespan of new buildings via the impacts of climate change [13–15].
han [16] developed a set of typical weather files based on climate
hange and analyzed their impact on a typical office building and

 residential apartment using EnergyPlus. His study indicated that
here would be a substantial increase in the energy consumption
f air-conditioning systems in those two types of buildings in Hong
ong, ranging from 2.6% to 14.3% for office buildings and from 3.7%

o 24% for a residential apartment. Radhi [17] investigated the issue
f localized climate variability between the pre-1991 climate and
he post-1991 climate of Bahrain, believed to be induced by oil fires
nd urban heat island effects from heavy reclamation efforts, and
valuated its impact on the performance of weather data used in
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
(2012), doi:10.1016/j.enbuild.2012.01.033

uilding simulation. He used these two sets of weather data in the
ontext of a low-rise and high-rise commercial building to com-
are the predicted and measured energy consumption. The study
oncluded that the traditional pre-1991 weather files tended to
 PRESS
ildings xxx (2012) xxx–xxx

underestimate the electricity consumption by 14.5% and misrep-
resented the cooling load by 5.9–8.9%, whereas, the more recent
weather data underestimated actual consumption by 1.4%.

The aforementioned studies quantify the impact weather data
has on the thermal performance of a building. However, no studies
could be found comparing the impact of different weather files from
many current data sources and web-services, several of which have
come online only recently. While the building simulation commu-
nity traditionally utilizes “typical” weather data, the objective of
this work is to compare “actual” weather data with the measured
“ground truth” dataset. Moreover, a difference of weather data for
a specific variable does not necessarily translate into a meaningful
impact on building performance, so we also compare the impact of
the various weather data in the context of annual building energy
simulations.

2.2. Study design

The aim of this paper is to investigate the impact of available
weather data of present and past actual conditions on the thermal
performance of buildings. The data will be presented in terms of
heating and cooling loads so that the results are not overshadowed
by the efficiency and performance of HVAC systems. The minimum
weather data parameters necessary for whole building simulations
accuracy are: dry bulb temperature; wet bulb temperature and/or
relative humidity, global, direct normal and diffuse solar radiation
(only two  variables are required to represent solar radiation); wind
speed and wind direction (for natural ventilation and infiltration).
Some providers claim to have full set of data for all the locations
around the world with a geospatial resolution of a 15–40 km2 grid.
Some weather vendors use data from the nearest available weather
sensor (typically NOAA weather data at airports), some use statis-
tics to interpolate from several nearby sensors to the target location,
and others use nearby sensor data to seed a gridded mesoscale
climate simulation model to provide simulated weather at the tar-
get location. Each technique has its strengths and weaknesses and
there is little consensus on which technique is most accurate.

Sources of historical weather data were identified and providers
were contacted to procure these datasets. Fourteen weather data
vendors were identified that provided either full or partial sets
of weather data necessary for whole building energy simulations;
however, only two  providers were chosen for this study. Other
providers either did not feel comfortable with participating in
the study or did not have a complete set of data available for
the study location (Oak Ridge, TN, USA; Latitude: 35◦57′N, Longi-
tude: 84◦17′W,  elevation: 334 m)  for the 2010 calendar year. The
providers’ data will be denoted as Set 1 and Set 2 and on-site mea-
sured data as Meas, for a total of three datasets (Table 1).

A brief description of weather station at study locations is as
follows:

Weather station located in Oak Ridge was used to collect
weather data for the comparisons. Table 2 shows the sensors used
at the weather station and their accuracy. Solar irradiation data was
taken from the weather station located at ORNL campus, which is
maintained by the National Renewable Energy Laboratory’s (NREL)
Measurement and Instrumentation Data Center (MIDC). While
global horizontal and diffuse horizontal irradiations were mea-
sured, the direct normal irradiation was calculated from global and
diffuse measurements.

For quality assurance, the measured field data was compared to
predictions of the ASHRAE clear sky model [18]. Fig. 1 compares the
field measured vs. ASHRAE clear sky model predicted global hori-
eather datasets for building energy simulation, Energy Buildings

zontal radiation and direct normal radiation on a clear sky day. The
measured total direct normal was 1.3% higher and global horizon-
tal was  6.1% lower compared to the model predicted values for the
day.

dx.doi.org/10.1016/j.enbuild.2012.01.033
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Table  1
Sensor used at the weather station and their accuracy.

Measured parameter Sensor used Accuracy

Temperature Vaisala HMP50 ±0.3 ◦C at 0 ◦C

Relative humidity Vaisala HMP50 ±3%, 0–90% range;
±5%, 90–98% range

Global  horizontal radiation LI-COR LI200 ±5% maximum; ±3% typical
Diffuse horizontal LI-COR LI200 (when RSR band rotates every 30 s

and blocks the sun)
±5% maximum; ±3% typical

Horizontal infrared radiation intensity from sky Eppley precision infrared radiometer (PIR) Temperature dependence: ±1%, linearity: ±1%
Wind  speed Campbell Scientific 03001 ± 0.5 m/s
Wind direction Campbell Scientific 03001 ±5◦

Liquid precipitation depth Texas Electronics TE525 ±1%, up to 1 in./h
+0, −3%, 1–2 in./h

Barometric pressure Vaisala CS106 
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ig. 1. Comparison between measured and ASHRAE Clear Sky Model predicted solar
adiation on a clear sky day.

Once the data was acquired; a two step approach was  taken in
his study. First, the major weather parameters (dry bulb tempera-
ure, wet bulb temperature, relative humidity, global/direct/diffuse
olar radiation and wind speed/direction) were compared for
ll 3 datasets using statistical metrics and techniques includ-
ng standard deviation, coefficient of determination (r2) and
olmogorov–Smirnov (K–S) tests. Second, three buildings – one
ommercial and two residential buildings, were selected to com-
are the impact of the weather datasets on heating and cooling

oads of the buildings. The simulations were carried out using Ener-
yPlus version 6.0 [19] simulation software.

. Results

.1. Weather data comparison

Major weather variables are compared statistically at hourly,
onthly and annual temporal resolutions. Statistical analyses

nclude calculation of several common metrics found in the lit-
rature such as the mean, median, standard deviation, mean bias
rror (MBE), mean absolute percentage of error (MAPE) [20,21],
oot mean square error (RMSE), and coefficient of variance RMSE
CV-RMSE) [22,23] from the hourly data. These variables were cal-
ulated as follows:

BE  =
∑N

i=1measi − seti

N
(1)

1 ∑N |measi − seti|
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
(2012), doi:10.1016/j.enbuild.2012.01.033

APE =
N 1 measi

(2)

MSE =
√

1
N − 1

∑N

1
(measi − seti)

2 (3)
+0, −5%, 2–3 in./h

±1.5 mb @ −40 to +60 ◦C

CV-RMSE = RMSE
measmean

(4)

where measi = measured value at hour i (for i from 1 to N hours);
N = number of observation points (N = 8760 for a year of hourly
data); seti = value at hour i (for Set 1 or Set 2); measmean = mean
of measured value

3.1.1. Monthly data comparison
Statistical distributions were computed for each major param-

eter. Fig. 2 uses a box-and-whisker plot to convey the statistical
distribution of monthly data for each variable in all datasets. For
the sake of clarity, wind direction and speed data are displayed
using a wind rose diagram (Fig. 3). Fig. 2 indicates that Set 2 con-
sistently gives higher values for solar irradiation during the entire
year and higher ambient temperatures values for summer months.
Set 1 is relatively close to measured data for all variables except
wind speed. As seen in Fig. 3, the wind speed and direction show
significant variation among all three datasets. One vendor provided
data that had integer accuracy for wind speed (m/s) at 10-degree
wind directions, with 82% of all hourly reports lying precisely along
the 4 cardinal directions; this is believed to be due to the use of a
normalized climate simulation for deriving these variables at the
requested location. This large variation in data shows that the raw
data source and processing techniques can produce significantly
different weather parameters. The differences in monthly average
dry bulb, direct normal incidence and wind speed can be as high
as 8 ◦C, 91 W/m2 and 2 m/s  respectively. Peak differences are even
more dramatic in the daily or hourly data. Differences in daily aver-
age dry bulb, direct normal incidence and wind speed can be as high
as 11 ◦C, 282 W/m2 and 5 m/s  respectively while the hourly value
differ by as much as 17 ◦C, 865 W/m2 and 8 m/s  respectively.

Fig. 4 shows the frequency distribution and significant differ-
ences of the major weather parameters among the three sets of
hourly data. However, all parameters do not have an equal impact
on building simulations; dry bulb temperature variation at higher
temperature bin levels will impact the cooling energy demand and
consumption more so than global horizontal irradiance at the low
bin levels. Several statistical variables were also calculated to bet-
ter capture the dynamic trends within the weather parameters. The
general criterion outlined by Draper and Smith [24] was  used for
selecting the appropriate regression model to maximize the good-
ness of fit. Correlation trends were also calculated to display how
closely Set 1 and Set 2 agree with the measured (meas) data. Fig. 5
shows the scatter plot for annual comparison which indicates that
eather datasets for building energy simulation, Energy Buildings

Set 1 compares fairly well with measured data with an R2 = 0.988
whereas Set 2 matched relatively poorly with an R2 = 0.889.

Table 2 summarizes the statistics calculated for each of the
major weather variables. CV-RMSE is often used in calibration

dx.doi.org/10.1016/j.enbuild.2012.01.033


Please cite this article in press as: M.  Bhandari, et al., Evaluation of weather datasets for building energy simulation, Energy Buildings
(2012), doi:10.1016/j.enbuild.2012.01.033

ARTICLE IN PRESSG Model
ENB-3584; No. of Pages 10

4 M.  Bhandari et al. / Energy and Buildings xxx (2012) xxx–xxx

Table  2
Statistical summary of three weather datasets for each major parameter.

Variable Statistic Meas Set 1 Set 2

Dry bulb temp. (◦C) Mean 14.48 14.95 18.51
Median 15.90 16.70 20.80
Standard deviation 10.96 10.98 10.18
MBE  −0.47 −4.03
MAPE  0.09 0.35
RMSE 1.31 5.45
CV-RMSE 0.09 0.38
Correlation r2 0.99 0.89
Kurtosis −1.00 −1.01 −0.75
Skewness −0.25  −0.26 −0.42
Minimum −13.10 −12.80 −9.10
Maximum 35.70 36.00 37.90
95% confidence 0.23 0.23 0.21

Global horizontal irradiance
(W/m2)

Mean 176.28 177.06 197.78
Median 7.00 2.00 5.00
Standard deviation 265.95 253.40 290.20
MBE −0.78 −21.50
MAPE  0.40 0.71
RMSE 74.24 133.95
CV-RMSE 0.42 0.76
Correlation r2 0.92 0.87
Kurtosis 0.83 0.46 0.37
Skewness 1.44 1.31 1.31
Minimum 0.00 0.00 0.00
Maximum 1,017.00 958.00 1,019.00
95% confidence 5.57 5.31 6.08

Wind  speed (m/s) Mean 0.88 1.50 2.07
Median 0.70 1.30 2.00
Standard deviation 0.87 1.66 1.80
MBE −0.62 −1.19
MAPE  1.43 3.49
RMSE 1.45 2.14
CV-RMSE 1.64 2.43
Correlation r2 0.39 0.17
Kurtosis 0.34 3.29 1.07
Skewness 0.95 1.41 0.94
Minimum 0.00 0.00 0.00
Maximum 4.50 13.50 11.00
95% confidence 0.02 0.03 0.04

Dew  point temp. (◦C) Mean 8.20 8.65 12.15
Median 8.70 9.00 12.90
Standard deviation 10.50 10.43 10.26
MBE −0.44 −3.94
MAPE  0.05 0.25
RMSE 1.21 5.82
CV-RMSE 0.15 0.71
Correlation r2 0.99 0.84
Kurtosis −1.10 −1.06 −0.94
Skewness −0.26 −0.28 −0.42
Minimum −16.60 −15.90 −12.60
Maximum 26.10 26.00 27.80
95% confidence 0.22 0.22 0.21

Direct normal irradiance
(W/m2)

Mean 168.09 166.78 212.95
Median 0.00 0.00 0.00
Standard deviation 289.84 252.36 318.59
MBE  1.31 −44.86
MAPE  1.88 8.17
RMSE 145.46 273.09
CV-RMSE 0.87 1.62
Correlation r2 0.75 0.70
Kurtosis 0.62 0.75 −0.57
Skewness 1.48 1.15 1.08
Minimum 0.00 0.00 0.00
Maximum 1,002.00 891.00 977.00
95% confidence 6.07 5.29 6.67

Wind  direction (◦) Mean 152.30 181.20 243.92
Median 159.00 210.00 270.00
Standard deviation 98.65 104.47 108.06
MBE  −28.90 −91.61
MAPE 1.01 1.80
RMSE 136.45 181.26
CV-RMSE 0.90 1.19
Correlation r2 0.02 0.02

dx.doi.org/10.1016/j.enbuild.2012.01.033
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Table  2 (Continued)

Variable Statistic Meas Set 1 Set 2

Kurtosis −0.81 −1.19 −1.29
Skewness 0.08 −0.13 −0.34
Minimum 0.00 10.00 10.00
Maximum 357.00 360.00 360.00
95% confidence 2.07 2.19 2.26

Relative humidity (percent) Mean 70.13 69.28 67.98
Median 73.00 71.00 64.00
Standard deviation 20.78 19.59 15.10
MBE 0.85 2.15
MAPE 0.08 0.27
RMSE 7.03 18.90
CV-RMSE 0.10 0.27
Correlation r2 0.89 0.24
Kurtosis −0.67 −0.68 −0.14
Skewness −0.51  −0.42 0.35
Minimum 12.00 14.00 26.00
Maximum 100.00 100.00 100.00
95% confidence 0.44 0.41 0.32

Diffuse irradiance (W/m2) Mean 70.00 81.06 67.04
Median 6.00 1.00 5.00
Standard deviation 101.23 106.88 90.77
MBE  −11.07 2.96
MAPE 0.55 0.69
RMSE 51.44 61.99
CV-RMSE 0.73 0.89
Correlation r2 0.78 0.73
Kurtosis 2.47 0.42 1.40
Skewness 1.68 1.16 1.39
Minimum 0.00 0.00 0.00
Maximum 574.00 462.00 479.00
95% confidence 2.12 2.24 1.90

Fig. 2. Box-and-whisker plots of hourly dry bulb, relative humidity, wind speed, global horizontal irradiation (GHI), direct normal irradiation (DNI), and diffuse horizontal
irradiation (DHI) for each month for each of the 3 datasets. Lines show the maximum and minimum value, where vertical bars meet is the average monthly data value, bars
show  the 25th–50th percentile and 50th–75th percentile of hourly data for that month. Charts for GHI, DNI, and DHI show data for daylight hours only.

dx.doi.org/10.1016/j.enbuild.2012.01.033
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Fig. 3. Wind direction and wind speed: (a) Meas, (b) Set 1, and (c) Set 2.
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Fig. 4. Frequency distribution of v

tudies and shows the error for dry bulb temperature for Set 1 and
et 2 is 9% and 38% respectively. A two parameter K–S test was also
erformed for the comparison purposes. In most cases the results
id not show any concrete reportable difference between Set 1, Set

 and measured data for all the variables.
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
(2012), doi:10.1016/j.enbuild.2012.01.033

Another method for weather dataset comparison includes the
tilization of heating and cooling degree days, which are indicative
f the impact weather data has on thermal energy performance

Fig. 5. Comparison of ann
within specific weather variables.

of buildings. In the absence of any actual measured weather data,
TMY3 data for the current location is often used. For this study,
we use the TMY3 file for McGhee Tyson Airport, Knoxville, located
40 km from the Meas weather site. This additional dataset will be
referred to as TMY  and does not necessarily represent weather data
eather datasets for building energy simulation, Energy Buildings

from 2010. Fig. 6 shows monthly heating and cooling degree days
on 18 ◦C base for all four sets. This figure shows that Set 2 con-
sistently indicates lower heating degree days and higher cooling

ual hourly dataset.

dx.doi.org/10.1016/j.enbuild.2012.01.033
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Fig. 6. Heating an

egree days than the other weather data. Depending on the loca-
ion and building type, this difference may  cancel out the impact of
eating and cooling energy in annual energy consumption.

.2. Whole building energy analysis

In order to ascertain the impact of weather data on the annual
eating and cooling loads, three representative buildings were
elected for comparative simulations: a medium office (Bldg 1),

 highly efficient residential home (Bldg 2) and a Home Energy
ating System Building Energy Simulation Test (HERS BESTEST)
ase L100A building (Bldg 3) [25]. EnergyPlus [19] was selected
o model the thermal performance of buildings based on the capa-
ilities and comprehensive reviews [26] and it has been validated
gainst experimental measurements and comparative testing using
ESTEST [27].

The first example building is a United States Department of
nergy’s medium office reference building [28] for ASHRAE cli-
ate zone 4 (Fig. 7a). It has 3 floors, conditioned floor area of

982 m2, built up flat roof with the insulation entirely above the
eck (U value = 0.35 W/m2K), and steel frame walls with insulated
alls deck (U value = 0.7 W/m2K) in accordance with ASHRAE 90.1-

004 [29]. Both lighting and internal loads were assumed to be
0.76 W/m2 each and the infiltration rate of 0.000302 m3/s m2 flow
er exterior surface area was considered. The building is divided

nto one core and four perimeter zones on each floor and each
one is served by VAV systems with reheat. Ground heat trans-
er is modeled separately with EnergyPlus’ auxiliary Slab program,
hich produces average ground temperatures for inclusion in the
ain simulation input file.
The second example building is a three-level highly energy effi-

ient research house (Fig. 7b) with a conditioned floor area of
82 m2. This house is one of the four energy efficient ZEBRAlliance
ouses (http://zebralliance.com) built using some of the most
dvanced building technology, products, and techniques available
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
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t the time of construction. In this unoccupied research house,
uman impact on energy use is simulated to match the national
verage according to Building America benchmarks with show-
rs, lights, ovens, washers and other energy-consuming equipment

Fig. 7. EnergyPlus model of buildings: (a
ling degree days.

turned on and off exactly according to schedule. This house
uses a structurally insulated panel (SIP) envelope with a ther-
mal  resistance of 3.7 m2K/W, with very low air leakage (measured
ACH50 = 0.74) and RSI 3.7 wall insulation, and thus has very low heat
gain and loss through the building envelope. The details of this
house’s envelope and other characteristics are described in [30].
This house was  selected for this study since it was very heavily
instrumented for validation studies.

The third example building is the HERS BESTEST Case L100A [25]
building model, shown in Fig. 7c. This building is a 17.3 m × 8.2 m
single-story, south-facing ranch house with one conditioned zone,
an unconditioned attic, and a vented crawl space. The slope of the
roof is 4:12, and the roof asphalt shingles had a 10% solar reflectance
and 90% thermal emittance. The ceiling insulation R-values were
used per ASHRAE standard 90.2-2007 [31]. The interior heating and
cooling set point temperatures were 20 ◦C and 25.5 ◦C, respectively.
Supply and return air ducts were located in the unconditioned attic.
The buildings had ducts with R-1.4 (K m2/W)  insulation over the
0.6 mm thick sheet metal and 4 ± 0.2% air leakage. All the three
buildings were simulated using EnergyPlus for all four weather
datasets assuming they were occupied 24 h/day and 7 days/week.
Fig. 7 shows the EnergyPlus models created for all the build-
ings.

Heating loads, cooling loads and annual energy consumption
were calculated. Table 3 shows that EnergyPlus simulated annual
energy consumption results for the three building types vary by up
to ±7% depending on the weather dataset used. Fig. 8 presents the
monthly heating and cooling loads (GJ) per building as a function
of weather data, rather than whole building energy consumption,
in order to avoid the effect of HVAC performance on energy con-
sumption. As expected, use of Set 2 results in consistently lower
heating loads and higher cooling loads. Even though the difference
in overall energy consumption is only 7%, the heating and cool-
ing loads differ by ±40%. Fig. 8 shows monthly heating and cooling
loads using all 4 sets of weather files.
eather datasets for building energy simulation, Energy Buildings

To further investigate the impact of individual weather parame-
ters, we replace part of the measured data (ORI) with data from Set
2 as it shows the maximum variation from the measured dataset. To
eliminate compounding effect, one variable was  changed at a time.

) Bldg 1, (b) Bldg 2, and (c) Bldg 3.

dx.doi.org/10.1016/j.enbuild.2012.01.033
http://zebralliance.com/
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Fig. 8. Monthly heating and cooling loads for

t should be noted that not all weather data parameters stored in
he weather file are used in the simulation process. In particular,
lobal horizontal irradiance and wind direction are not used at all
uring the simulations.

The parameters varied include dry bulb temperature, relative
umidity (RH), direct normal solar irradiation (DNI), diffuse hori-
ontal solar irradiation (DHI) and wind speed (WS) as shown in Fig.
. This figure quantifies the impact of specific weather parameters
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
(2012), doi:10.1016/j.enbuild.2012.01.033

n the variability of energy consumption as a function of building
ype. For example, when the dry bulb temperatures of the measured
ata were replaced by the dry bulb temperatures of Set 2 (all other
ata of Meas remained unchanged), annual energy consumption

able 3
ariance in annual energy consumption as a function of weather data.

Annual energy consumption (GJ)

Meas Set 1 

Bldg 1 (4982 m2) 2879.32 2914.43 

Diff  35.11 

%  diff 1.22%

Bldg  2 (382 m2) 94.32 97.31 

Diff  2.99 

%  diff 3.17%

Bldg  3 (143 m2) 43.96 46.93 

Diff  2.97 

%  diff 6.76%
building varies as a function of weather data.

was reduced by 10.7%. It is interesting to note the impact of dry bulb
temperature in Fig. 9. The higher dry bulb temperature increases
energy consumption in the commercial building (Bldg 1) due in part
to high internal loads leading to higher cooling energy consump-
tion. However, the energy consumption is decreased in both the
residential buildings which have higher heating energy consump-
tion. It should also be pointed out that while wind speed varied
dramatically between the measured data and Set 2, the impact on
eather datasets for building energy simulation, Energy Buildings

annual energy consumption averaged 1.8% increase across all build-
ing types. This is due in part to the use of natural ventilation in the
house attic being modeled via the detailed Air Flow Network model
of EnergyPlus.

Set 2 TMY

2928.3 2801.7
48.98 −77.62

 1.70% −2.70%

95.97 91.97
1.65 −2.35

 1.75% −2.49%

42.14 41.28
−1.82 −2.68

 −4.14% −6.10%

dx.doi.org/10.1016/j.enbuild.2012.01.033
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sed to replace the measured weather data for variables including: dry bulb temper-
ture (DB), relative humidity (RH), direct normal irradiance (DNI), direct horizontal
rradiance (DHI), and wind speed (WS).

. Conclusions

Calibrated energy modeling of residential and commercial
uildings has gained importance in a retrofit-dominated market
nd accurate weather data plays an important role in a more auto-
ated calibration process and credible projected energy savings.
ccurate weather data for the microclimate surrounding a given
uilding during the time that data was collected is necessary for
ccurate calibration. This paper compares third-party weather data
ith data collected from a weather station inaccessible to the ser-

ice providers and estimates the impact of discrepancy in various
eather parameters as well as heating/cooling loads.

Monthly average dry bulb temperature; relative humidity;
irect, diffuse and horizontal solar irradiation; and wind speed
ere compared using three actual weather datasets from different

ources for calendar year 2010. The study found that the peak differ-
nce in individual hourly variables can be as high as 90% and annual
Please cite this article in press as: M.  Bhandari, et al., Evaluation of w
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uilding energy consumption can vary by ±7% while monthly build-
ng loads can vary by ±40% for different weather datasets.

Three buildings were used to quantify the weighting of each
ajor weather parameter’s importance on the building’s thermal

[

[
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performance. It can be concluded that the principle of caveat emp-
tor applies: “let the buyer [or user] beware” regarding the accuracy
of synthesized weather data. While this study’s minimal scope of
three datasets for one location is insufficient to make an accurate
assessment of the state of the industry, significant variance and its
impact on energy models has been shown. Researchers and energy
modelers are encouraged to carefully examine “actual” weather
data, particularly when used for calibration.
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